OKLAHOMA STATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5513
Stochastic Systems
Fall 2007
Midterm Exam \#1

PLEASE DO ALL FIVE PROBLEMS

Name : \qquad

E-Mail Address: \qquad

Problem 1:

In a large hotel it is known that 99% of all guests return room keys when checking out. If 250 engineers check out after a conference, what is the probability that not more than three will fail to return their keys?

Problem 2:

The output voltage X from the receiver in a particular binary digital communication system, when a binary zero is being received, is Gaussian (noise only) as defined by $a_{X}=0$ and $\sigma_{X}=0.3$. When a binary one is being received it is also a Gaussian (signal-plus-noise now), but as defined by $a_{X}=0.9$ and $\sigma_{X}=0.3$. The receiver's decision logic specifies that at the end of a binary (bit) interval, if $X>0.45$ a binary one is being received. If $X \leq 0.45$ a binary zero is decided. If it is given that a binary zero is truly being received, find the probabilities that a) a binary one (mistake) will be decided, and b) a binary zero is decided (correct decision).

Problem 3:

If $f_{X}(x)$ is symmetric about the mean, that is $f_{X}(x+\bar{X})=f_{X}(-x+\bar{X})$, show the third central moment, $\mu_{3}=0$.

Problem 4:

A certain large city averages three murders per week and their occurrences follow a Poisson distribution. A) What is the probability that there will be five or more murders in a given week? b) How many weeks per year (average) can the city expect the number of murders per week to equal or exceed the average number per week?

Problem 5:

Define a function $g(\cdot)$ of a random variable X by

$$
g(X)=\left\{\begin{array}{ll}
1, & x \geq x_{0} \\
0, & x<x_{0}
\end{array},\right.
$$

where x_{0} is a real number $-\infty<x_{0}<\infty$. Show that

$$
E(g(X))=1-F_{X}\left(x_{0}\right) .
$$

